

1 ZK – THE SIMPLEST WAY TO MAKE WEB APPLICATIONS RICH

CASE STUDY

 Sinclair
Sinclair is a software company supporting multi-industry

enterprises with IT responsibilities to an oil & gas company,

hotels, ski resorts and a large cattle ranching operation

“ZK is a deceptively simple, and yet

complex framework”

The Beginning

A Developer’s Diary by Ron Grimes of Sinclair

Over the past dozen years, Sinclair's journey through the world of

web applications has taken a few evolutionary steps, most of which

were forced upon us by unforeseen events, as diverse as 3rd party

tools being end-of-life'd, new standards and regulations, better

frameworks emerging, and new browser releases introducing

compatibility issues.

During this same period, web applications have been seen

increasingly, by predators, as the gateway to attack corporations

and their customers' identity and assets. This, in turn, has forced the

web application developer to tighten the security and sophistication

of those corporate services that are exposed to the world.

To further complicate the situation, it quickly became unsatisfactory

for a web application to consist of a simple, plain looking form that

accommodated CRUD operations. The user quickly began to expect

web applications to look and perform as elegantly as their desktop

or client-server counterparts. In fact, in some respects, it had to

have an even greater level of sophistication, providing a cohesive

and coherent integration of data, taken from disparate systems, and

presenting it as a single, seamless interface known as the modern

dashboard application.

For many corporations, they see web applications as a nice-to-have

service, rather than what it truly is: the face of the corporation. It is

the sole form of interaction that thousands, if not millions, of

customers will have with them on any given day. In these cases, as

far as the customer is concerned, the web application IS the

corporation because it is the only vehicle through which the

company is experienced. The impression that the web application

makes upon the customer is the impression they have of the

company on that day.

As each year progressed, new demands were created for the web

application developer. Because the requirements grew over time,

the demands of the position crept in upon us, creating more and

2 ZK – THE SIMPLEST WAY TO MAKE WEB APPLICATIONS RICH

CASE STUDY

more expectations upon both our professional and personal time.

Had the modern day requirements of a web application been

present from day one, it would have been easier to justify the size of

staff that was needed in the days of client-server development. But,

since web applications evolved in complexity over a period of

several years, it was just expected that the developer would pick up

these additional skills. And soon, we were all wearing six or seven

hats. Be a front-end UX and UI expert! Be a middleware expert! Be a

database expert, taking tables designed for old school procedural

programs and make them work in an object-oriented world! Try to

develop a bit of graphic artist skill! Can't you learn Photoshop and

Illustrator in your spare time? Be a QA expert! Then, implement it,

support it, and … oh, hell … no, I don't have time to document it too!

I have gone through this Cliff notes history, of what I am sure is a

common story amongst many web application developers, in order

to explain, if not justify, the path I have taken in choosing the

technologies I have, for our web stack, over the years.

When I came to Sinclair in April of 2000, the process of turning the

desktop around to face the world had already begun via CGI type

programming. It was quite cumbersome, and definitely violated the

concept of a loosely coupled architecture. My initial charge was to

create a better layer of separation between data and UI design.

From Adobe Flex to ZK
I won't bore you with each evolutionary step that we took, and why,

but will instead focus on our transition from Adobe Flex, which we

had adopted in 2006, to ZK framework in 2011. Prior to 2006, and

subsequent to our CGI days, we primarily used DHTML pages that

were pushed out as the result of server-side transformation, which

married XSL documents with resultant web service SOAP

envelopes.

3 ZK – THE SIMPLEST WAY TO MAKE WEB APPLICATIONS RICH

CASE STUDY

“Doing as much with as little as possible

is our de facto motto. And, ZK has

become a critical centrepiece of that

strategy”

In 2006, there were no mature JavaScript frameworks to insulate

developers from the travails of the infamous cross-browser hell.

Consequently, it seemed to me, the best way to indemnify ourselves

against browser inconsistencies, and truly achieve a write-once,

run-anywhere world was to take advantage of Adobe's AVM , as

embodied by the Flash Player. The decision seemed logically sound,

since it was the most ubiquitous technology for insulating the

developer against browser inconsistencies. It also had the

advantage of making the UI look great with their out-of-the-box

component set. As any web developer will tell you, it can easily take

longer to get the UX and UI right than it takes to build the

middleware services and backend database tables and triggers. If

Adobe could help me out on that end of things, I was all for it.

That was how we did things from 2006 thru 2011: Flex on the

client-side, Spring/CXF web services in the middle, and connecting

to a variety of databases on the backend. Then came the Fall of

2011, when Adobe announced that they would be kicking the Flex

SDK out the door to go live with the neighbor, as an ASF incubator

project, while they would retain FlashBuilder (the IDE for developing

Flex applications) in-house and refocusing it toward their new goals.

It was clear to me that the writing was on the wall, in spite of

Adobe's promise to continue to support the Flex SDK, via their Flash

Player, for at least the next five years.

So, we were once again sent scrambling to replace that piece of the

architectural puzzle. There are a ton of options out there, to say the

least. Choosing one is a nightmare because you're almost assured

that, no matter which fork in the road you choose, someone is going

dynamite the road out from underneath you once you get too far

down that road to turn back. It had happened before with a Novell

product, and now it was happening with an Adobe product. So,

clearly, the wisdom of choosing a solution, from one of the top 100

software companies in the world, as a safeguard against a piece of

one's technology stack being obsolesced, was not a reliable

strategy.

It was this realization that opened me up to considering a solution

from half way around the world, and from a company I had never

heard of. I had concluded that their product was just as likely, if not

more likely, to have a longer shelf life than the solutions I had

previously purchased from world renowned companies. My

rationale was that it was more likely that a company with a single

product, upon which their company relied for profitability, was far

more likely to make sure it remained viable than would a company

like Adobe, who would have no compunction against giving the axe

to an unprofitable product that was but one out of their legions.

4 ZK – THE SIMPLEST WAY TO MAKE WEB APPLICATIONS RICH

CASE STUDY

With ZK, the heart of the web
application could all reside on the
server, without being exposed to
would-be hackers”

Why ZK
It was at this time, during my search through a plethora of

frameworks, that I stumbled upon ZK. I was immediately impressed

with the component set, which was even more ample than those

that came packaged with FlashBuilder. As I continued to read about

this framework, I was further sold on the Server+client fusion

architecture, partly facilitated by the jQuery framework. The fact

that the client was pushed out, from the server, as an

HTML5/jQuery solution impressed me even more, as it was clear

that most of the directional arrows in the road were pointing to

HTML5 as the future of enterprise web application development.

With HTML5 at the heart of ZK's client-side solution, it was a given

that it would lend itself nicely to being more device agnostic, since

mobile and tablet apps were also moving toward its support.

With ZK, the heart of the web application (e.g., the business logic

layer) could all reside on the server, without being exposed to

would-be hackers. This was definitely a plus for the security

considerations. It also leant itself more easily to maintaining state

for any given user session.

The move to ZK also caused me to re-examine how we were doing

middleware, which, up to this time, had been exclusively through

web services (e.g., SOAP envelopes). It no longer made sense, in our

environment, to use such a burdensome mechanism for

communicating between client and services. Eliminating the

marshalling and un-marshalling of SOAP envelopes would greatly

increase response time back to the client, and reduce load on the

server.

ZK is a deceptively simple, and yet complex framework. Initially, it's

easy to think how fast it is it put together a sophisticated web

application. And, that is truly the genius of the frameworks design.

A ZK neophyte can quickly slap something together. But, the longer

you work with the framework, the more depth you find it to have,

making its possibilities only limited by your own imagination.

Consequently, you begin to see how you can refine things to take

advantage of its unique “Web Technology Synergy” that allows

integration with JSP, CDI, Spring, Grails, Python, Scala, Groovy, or a

couple dozen other options.

One way to illustrate its deceptive simplicity is in how ZK UI objects

are created. I would imagine that most beginners create all page

objects, from the ZK Palette, as UI objects, which consists of two

parts: a client-side widget (the face of the UI object) and its

counterpart on the server-side, a Java component (the brains of the

UI object). You get this built-in complexity by the simple act of

5 ZK – THE SIMPLEST WAY TO MAKE WEB APPLICATIONS RICH

CASE STUDY

dragging a component from the ZK Palette to your ZUL web page.

While this will work fine, it can create unnecessary server-side

components, where there is no need for such symmetry. In such

cases, one can create native XHTML tags within the ZUL (ZK's

dialect of Mozilla's XUL). In this way, a Java server-side component

is not created as its counterpart. This is just one small example, but

indicates the type of refinements that can be made as one delves

further into the ZK framework.

Sinclair x ZK
Our small shop has been working with ZK for over a year now. In

fact, to describe us as a “small” shop is an understatement. We are a

one senior and one junior developer team, writing and maintaining

web applications for a multi-industry enterprise with IT

responsibilities to an oil & gas company, several hotels, two ski

resorts, and a large cattle ranching operation. Needless to say,

doing as much with as little as possible is our small group's de facto

motto. And, ZK framework has become a critical centerpiece of that

strategy.

View Part 2 of this case study to read about “The Project”.

About ZK

ZK is the leading enterprise Java Web framework with more than 1,500,000 downloads. ZK is deployed by a
large number of Fortune Global 500 companies, including Barclays, Allianz, Swiss RE, Roche, Deutsche Bank,

Sony, Sun Microsystems, and Toyota, providing them with the ability to rapidly create rich Ajax enterprise
level applications.

 Contact us

Potix Corporation

info@zkoss.org
www.zkoss.org

http://www.zkoss.org/resource/file/CaseStudies/Sinclair_Case_Study_part2.pdf

